(03 Hours) [Marks: 80] | N.B.: | | (1) Attempt any four questions. | | | | | |-------|------------|--|------|--|--|--| | | | (2) Assumption made should be clearly stated. | Y 60 | | | | | 1. | A. | | 10 | | | | | | В. | materials. What is shear coupling effect? What terms of stiffness/compliance matrix are responsible for shear coupling? What is the consequence of shear coupling on the behaviour of composite? Explain with an example. | 10 | | | | | 2. | A. | | 10 | | | | | | В. | Explain how the load is transferred from one side of a broken fiber to the matrix and subsequently to the adjacent fibers during tensile loading of a unidirectional composite along the fiber direction. Take the case of [90/0] _S laminate for the purpose of illustration. | 10 | | | | | 3. | A. | A 50 mm \times 50 mm square lamina with its fibers oriented at 30° with respect to the + X axis is compressed by 0.05 mm in both the X and Y directions. No shear deformations are allowed. What is the state of stress σ_x , σ_y and τ_{xy} required to produce this bidirectional compression? Material: T300 / 5208, $V_f = 0.7$ | 10 | | | | | | В. | Plot the failure envelops on the answer sheet with appropriate proportions, for a typical UD lamina made of T300/5208 composite on stress plane using Maximum Stress and Maximum Strain Failure Theories. | 10 | | | | | 4. | A. | Explain any two uniaxial test methods used to find the strength tensor F_{12} . | 10 | | | | | | B. | For a case of symmetric quasi-isotropic laminate $[0/45/-45/90]_S$, derive expressions for A_{11} , A_{12} , and A_{66} in terms of Q_{11} , Q_{12} , Q_{22} , and Q_{66} respectively. | 10 | | | | | 5. | A., | | 10 | | | | | | B . | Explain the factors which are required to be considered while selecting an appropriate method for repairing a composite structure. | 10 | | | | | 6. | A. | Derive expressions for E_2 and μ_{12} for a specially orthotropic lamina in terms of fiber and matrix elastic properties and volume fractions. Also state the assumptions made. | 10 | | | | | | B . | Write notes on followings: (i) Resin Transfer Moulding (ii) Pultrusion | 10 | | | | | 100 | | | | | | | Given data Properties of Unidirectional 'Graphite / Epoxy' (T300 / 5208) Lamina | $V_{\rm f}$ | 0.7 | Compliance C | onstants | |----------------------------|-----------|-----------------|--| | Specific Gravity | 1.6 | S_{11} | $5.525 \text{ (Pa)}^{-1} \times 10^{-12}$ | | E ₁ | 181 GPa | S ₂₂ | $97.09 (Pa)^{-1} \times 10^{-12}$ | | E_2 | 10.3 Gpa | S_{12} | $-1.547 \text{ (Pa)}^{-1} \times 10^{-12}$ | | μ_{12} | 0.28 | S ₆₆ | $139.5 \text{ (Pa)}^{-1} \times 10^{-12}$ | | μ_{21} | 0.016 | Strengths (MP | a) | | G_{12} | 7.17 GPa | X_t | 1500 MPa | | Stiffness Constants | | Xc Tologo | 1500 MPa | | Q ₁₁ | 181.8 GPa | Y | 40 MPa | | Q_{22} | 10.34 GPa | Ye | 246 MPa | | Q ₁₂ | 2.897 GPa | | 68 MPa | | Q ₆₆ | 7.17 GPa | Thermal Expa | nsion Coefficients | | | 2000 | α_1 | 0.02 (µm/m)/°K | | | | α_2 | 22.5 (µm/m)/°K | ## **Relations for Stiffness and Compliance Transformations** | | $S_{11}(Q_{11})$ | $S_{22}(Q_{22})$ | $S_{12}(Q_{12})$ | $S_{66} (4Q_{66})$ | |--|------------------|------------------|------------------|--------------------| | $\bar{S}_{11}\left(\bar{Q}_{11}\right)$ | m^4 | n^4 | $2m^2n^2$ | m^2n^2 | | $\bar{S}_{22} \left(\bar{Q}_{22} \right)$ | n^4 | m^4 | $2m^2n^2$ | m^2n^2 | | $\bar{S}_{12}\left(ar{Q}_{12} ight)$ | m^2n^2 | m^2n^2 | (m^4+n^4) | $-m^{2}n^{2}$ | | $\bar{S}_{66} (4\bar{Q}_{66})$ | $4m^2n^2$ | $4m^2n^2$ | $-8m^2n^2$ | $(m^2 - n^2)^2$ | | $\bar{S}_{16} (2\bar{Q}_{16})$ | $2m^3n$ | $-2mn^3$ | $2(mn^3-m^3n)$ | $(mn^3 - m^3n)$ | | $\bar{S}_{26} (2\bar{Q}_{26})$ | $2mn^3$ | $-2m^3n$ | $2(m^3n-mn^3)$ | $(m^3n - mn^3)$ |